If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40^2+x^2=70^2
We move all terms to the left:
40^2+x^2-(70^2)=0
We add all the numbers together, and all the variables
x^2-3300=0
a = 1; b = 0; c = -3300;
Δ = b2-4ac
Δ = 02-4·1·(-3300)
Δ = 13200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13200}=\sqrt{400*33}=\sqrt{400}*\sqrt{33}=20\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{33}}{2*1}=\frac{0-20\sqrt{33}}{2} =-\frac{20\sqrt{33}}{2} =-10\sqrt{33} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{33}}{2*1}=\frac{0+20\sqrt{33}}{2} =\frac{20\sqrt{33}}{2} =10\sqrt{33} $
| x+5.8=7 | | 9x+3=27x-1 | | 7/10+4/5=z | | 2x^2=2000 | | −x^2+−5x−12=0 | | 2/3x+30=2x | | x-30=703 | | 4x-10=x+255 | | 4.5(8r-14)-10=145 | | 512^5x-1=(1/8)^4-x | | b-16+16=20+16 | | 3(y-4)=5(y+2) | | 8/(21+x)=1/3 | | 9x^2+3x-9=0 | | 3x+6=½x-4 | | -7(x+6)=5x+2 | | 1/6(x+6)=1/7(2x+3) | | n×12+8=104 | | 2a+25=35 | | 10/3x-5.3=-2 | | 4(x+1)^(2)=100 | | 1.4x-3.8=0.4×+6.2 | | X2-8x-20=90 | | 49-7÷x=1 | | 4x-15=-1-3x | | (7x+18)+(5x-6)=180 | | 10r+5r=2r+8–3r | | y÷8+2=18 | | 9/6=x/10=9x106x(X)90=6x90/6=XX=15 | | 8x-5=2x-11 | | x7x+62=125 | | 10X+y=2(10y+X)-9 |